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Background on Mapper Graphs
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Mapper Algorithm

The Mapper was introduced in [Singh et al., 2007] as a topology based data visualization
method.
Given a discrete metric space (Xn = {X1, . . . ,Xn}), d), as well as a filter function f : Xn → R :

1. Cover the range of values Yn = f (Xn) with a set of consecutive intervals I1, . . . , Ir that
overlap, i.e., one has Ii ∩ Ii+1 ̸= ∅ for all 1 ≤ i ≤ r − 1.

2. Apply a clustering algorithm to each pre-image f −1(Ij), j ∈ {1, ..., r}. This defines a
pullback cover C = {C1,1, . . . , C1,k1 , . . . , Cr ,1, . . . , Cr ,kr } of Xn.

3. The Mapper graph is defined as the nerve of C. Each node vj ,k of the Mapper graph
corresponds to an element Cj ,k of C, and two nodes vj ,k and vj ′,k ′ are connected by an
edge if and only if Cj ,k ∩ Cj ′,k ′ ̸= ∅.
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Mapper Example

Figure: Example of a Mapper graph taken from [Carriere et al., 2018]. The clustering is specified from a
neighborhood graph.
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Hyperparameters

Most commonly, the intervals are chosen to have the same length, with a fixed percentage of
overlap between consecutive ones.

Hyperparameters to choose

1. Number of intervals (resolution) : r,

2. Percentage of overlap (gain) : g,

3. Clustering,

4. Filter function.
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Hyperparameters

Most commonly, the intervals are chosen to have the same length, with a fixed percentage of
overlap between consecutive ones.

Hyperparameters to choose

1. Number of intervals (resolution) : r, ← Grid search, Look for stability, Infer it from the
inherent manifold structure of the data.

2. Percentage of overlap (gain) : g, ← Same as resolution.

3. Clustering, ← Depends on the nature of the dataset.

4. Filter function. ← ?
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Topological Signatures on Mapper graphs
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Persistence Diagram
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Filtering a Mapper graph

Fix a dataset (discrete metric space) Xn, a integer r and a clustering function Clus.
Let K be the set of simplicial complexes of dimension less or equal to 1 (i.e., graphs) and such
that their sets of vertices (i.e., their 0−skeletons) are subsets of the power set P(Xn).

Filtration values

For a function F ∈ F(Xn,R), we associate a filtration ϕ to some K ∈ K with:

∀σ ∈ K : ϕ(σ) = max
c∈σ

∑
x∈c F (x)

card(c)
.
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Persistence loss

Denoting PD as the set of subsets of R2 consisting of a finite number of points outside the
diagonal ∆ = {(x , x) : x ∈ R}, we also consider a loss function : ℓ : PD −→ R.
For example :

{(ui , vi )}1≤i≤n 7−→ −
n∑

i=1

|ui − vi |.
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Soft Mapper
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Formal definition of the Mapper

Cover assignment

We call any binary matrix e ∈ {0, 1}n×r an r-latent cover assignment of Xn, where ei ,j = 1
must be understood as point xi belonging to the j-th element of a latent cover of the data.

Mapper complex generating function

Define
MapComp: {0, 1}n×r −→ K,

to be the function that takes a cover assignment and associates its corresponding Mapper
complex. It uses the same algorithm for Mapper but replaces f −1(Ij) by {xi : ei ,j = 1}.
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Soft Mapper

We use this formalism to define distributions on Mapper graphs.

Cover assignment scheme

A cover assignment scheme is a double indexed sequence of random variables

A = (Ai ,j)1≤i≤n
1≤j≤r

such that each Ai ,j is a Bernoulli random variable conditionally to Xn.
Let pi ,j(Xn) be the parameter of the Bernoulli distribution of (Ai ,j |Xn), which is thus a
function of the point cloud Xn.

Soft Mapper

Let A be a cover assignment scheme. The Soft Mapper of A is defined as the associated
distribution of Mapper complexes, which corresponds to the push forward measure of the
distribution of A by the map MapComp.

13 / 29



Example 1 : The regular case

let f : Xn → R be a filter function and let (Ij)1≤j≤r be a finite cover of the image f (Xn) of f .
The standard Mapper graph is then defined as MapComp(e∗), where for every 1 ≤ i ≤ n and
1 ≤ j ≤ r :

e∗i ,j = 1 if f (xi ) ∈ Ij .

The cover assignment scheme A∗, in this case, is degenerate at e∗.

P(A∗ = e|Xn) =

{
1 if e = e∗,

0 otherwise.
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Example 2 : Smooth relaxation of the regular case

Let δ > 0. Using the same notations as before, and denoting each element of the cover with
Ij = [aj , bj ], consider, for each j ∈ {1, ..., r}, the function qj : Xn −→ [0, 1] defined with:

x 7→


1, if f (x) ∈ [aj , bj ]

exp(1− 1/(1− (
aj−f (x)

δ )2)), if f (x) ∈ [aj − δ, aj ]

exp(1− 1/(1− (
f (x)−bj

δ )2)), if f (x) ∈ [bj , bj + δ]

0, otherwise

Now, define Aδ = (Aδ,i ,j)1≤i≤n
1≤j≤r

to be the random variable in {0, 1}n×r such that for every

(i , j) ∈ {1, ..., n} × {1, ..., r}:
Aδ,i ,j | Xn ∼ B(qj(xi )).
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Comparison between A∗ and Aδ

Figure: Assignment probability pi,j(Xn) of a point xi to an interval Ij = [2, 3] for A∗ and Aδ, plotted against
f (xi ).
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Illustration of the smooth assignment scheme Aδ
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Risk of a Soft Mapper

We define the risk of a Soft Mapper MapComp(A) by integrating the loss according to the
distribution of the Soft Mapper :

E (L(A,F )|Xn) =
∑

e∈{0,1}n×r

L(e,F ) · P(A = e|Xn).
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Filter Optimization
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Problem setting

Let us introduce a parameterized family of functions {fθ : Xn → R, θ ∈ Rs}. Let A be a cover
assignment scheme whose joint distribution Pθ depends on the filter function fθ. Denoting

L: Rs −→ R
θ 7−→ Eθ(L(A, fθ)|Xn), (1)

our aim is to find a minimizer of L.

20 / 29



Main result

[Oulhaj et al., 2024]

Suppose that there exists an o-minimal structure S such that:

• for every x ∈ Xn, the function θ 7→ fθ(x) is definable in S and is locally Lipschitz,

• for every m ∈ N, the restriction of ℓ to the set of (extended) persistence diagrams of size
m is definable in S and is locally Lipschitz,

• for every e ∈ {0, 1}n×r , the function θ 7→ Pθ(A = e|Xn) is definable in S and is locally
Lipschitz.

Then L is definable in S and is locally Lipschitz.
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Main result

[Oulhaj et al., 2024]

Suppose that there exists an o-minimal structure S such that:

• for every x ∈ Xn, the function θ 7→ fθ(x) is definable in S and is locally Lipschitz,

• for every m ∈ N, the restriction of ℓ to the set of (extended) persistence diagrams of size
m is definable in S and is locally Lipschitz,

• for every e ∈ {0, 1}n×r , the function θ 7→ Pθ(A = e|Xn) is definable in S and is locally
Lipschitz. ← Doesn’t work in the regular (degenerate) case

Then L is definable in S and is locally Lipschitz.
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Experiments
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3D shapes
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We wish to optimize a linear parametric family of functions, i.e., equal to
{fθ : x 7→ ⟨x , θ⟩, θ ∈ R3}, and the cover assignment scheme Aδ is the smooth relaxation of the
standard case, with δ = 10−2 · (maxx∈Xn fθ(x)−minx∈Xn fθ(x)).

Figure: Learning curves for the 3-dimensional shapes corresponding, from left to right, to: the human, the
octopus and the table.
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Before - After

26 / 29



Thank you for listening !

Check out the poster at Hall C 4-9 #1113
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Guarantees on stochastic gradient descent

[Davis et al., 2020]

Under technical conditions on the stochastic gradient descent algorithm and under the
following assumptions :

• L is definable in an o-minimal structure,

• L is locally Lipschitz,

then (L(xk))k converges almost surely to a critical value and the limit points of (xk)k are
critical points of L.
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