Differentiable Mapper

Topological Optimization of Data Representation

Ziyad Oulhaj ¹ Mathieu Carrière ² Bertrand Michel ¹

¹Laboratoire de Mathématiques Jean Leray Nantes Université - École Centrale Nantes

²DataShape - Centre Inria d'Université Côte d'Azur

July 1, 2025

Background on Mapper Graphs

The Mapper was introduced in [Singh et al., 2007] as a topology based data visualization method.

Given a discrete metric space $(X_n = \{X_1, \ldots, X_n\}), d)$, as well as a filter function $f : X_n \to \mathbb{R}$:

- 1. Cover the range of values $\mathbb{Y}_n = f(\mathbb{X}_n)$ with a set of consecutive intervals I_1, \ldots, I_r that overlap, i.e., one has $I_i \cap I_{i+1} \neq \emptyset$ for all $1 \leq i \leq r-1$.
- Apply a clustering algorithm to each pre-image f⁻¹(I_j), j ∈ {1,...,r}. This defines a pullback cover C = {C_{1,1},...,C_{1,k1},...,C_{r,1},...,C_{r,kr}} of X_n.
- 3. The Mapper graph is defined as the *nerve* of C. Each node $v_{j,k}$ of the Mapper graph corresponds to an element $C_{j,k}$ of C, and two nodes $v_{j,k}$ and $v_{j',k'}$ are connected by an edge if and only if $C_{j,k} \cap C_{j',k'} \neq \emptyset$.

Mapper Example

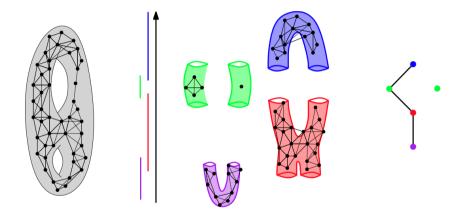


Figure: Example of a Mapper graph taken from [Carriere et al., 2018]. The clustering is specified from a neighborhood graph.

Most commonly, the intervals are chosen to have the same length, with a fixed percentage of overlap between consecutive ones.

Hyperparameters to choose

- 1. Number of intervals (resolution) : r,
- 2. Percentage of overlap (gain) : g,
- 3. Clustering,
- 4. Filter function.

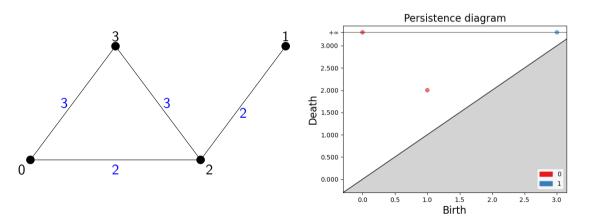
Most commonly, the intervals are chosen to have the same length, with a fixed percentage of overlap between consecutive ones.

Hyperparameters to choose

- 1. Number of intervals (resolution) : r, ← Grid search, Look for stability, Infer it from the inherent manifold structure of the data.
- 2. Percentage of overlap (gain) : g, \leftarrow Same as resolution.
- 3. Clustering, \leftarrow Depends on the nature of the dataset.
- 4. Filter function. \leftarrow ?

Topological Signatures on Mapper graphs

Persistence Diagram



Fix a dataset (discrete metric space) \mathbb{X}_n , a integer r and a clustering function Clus. Let \mathbb{K} be the set of simplicial complexes of dimension less or equal to 1 (i.e., graphs) and such that their sets of vertices (i.e., their 0-skeletons) are subsets of the power set $\mathcal{P}(\mathbb{X}_n)$.

Filtration values

For a function $F \in \mathcal{F}(\mathbb{X}_n, \mathbb{R})$, we associate a filtration ϕ to some $K \in \mathbb{K}$ with:

$$orall \sigma \in \mathcal{K} \, : \, \phi(\sigma) = \max_{c \in \sigma} rac{\sum_{x \in c} \mathcal{F}(x)}{\operatorname{card}(c)}.$$

Denoting *PD* as the set of subsets of \mathbb{R}^2 consisting of a finite number of points outside the diagonal $\Delta = \{(x, x) : x \in \mathbb{R}\}$, we also consider a loss function : $\ell : PD \longrightarrow \mathbb{R}$. For example :

$$\{(u_i, v_i)\}_{1 \leq i \leq n} \longmapsto -\sum_{i=1}^n |u_i - v_i|$$

Soft Mapper

Cover assignment

We call any binary matrix $e \in \{0,1\}^{n \times r}$ an *r*-latent cover assignment of X_n , where $e_{i,j} = 1$ must be understood as point x_i belonging to the *j*-th element of a latent cover of the data.

Mapper complex generating function

Define

$$\mathsf{MapComp} \colon \{0,1\}^{n \times r} \longrightarrow \mathbb{K},$$

to be the function that takes a cover assignment and associates its corresponding Mapper complex. It uses the same algorithm for Mapper but replaces $f^{-1}(I_j)$ by $\{x_i : e_{i,j} = 1\}$.

Soft Mapper

We use this formalism to define distributions on Mapper graphs.

Cover assignment scheme

A cover assignment scheme is a double indexed sequence of random variables

$$A = (A_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le r}}$$

such that each $A_{i,j}$ is a Bernoulli random variable conditionally to \mathbb{X}_n . Let $p_{i,j}(\mathbb{X}_n)$ be the parameter of the Bernoulli distribution of $(A_{i,j}|\mathbb{X}_n)$, which is thus a function of the point cloud \mathbb{X}_n .

Soft Mapper

Let A be a cover assignment scheme. The *Soft Mapper* of A is defined as the associated distribution of Mapper complexes, which corresponds to the push forward measure of the distribution of A by the map MapComp.

let $f: \mathbb{X}_n \to \mathbb{R}$ be a filter function and let $(I_j)_{1 \le j \le r}$ be a finite cover of the image $f(\mathbb{X}_n)$ of f. The standard Mapper graph is then defined as $MapComp(e^*)$, where for every $1 \le i \le n$ and $1 \le j \le r$:

$$e^*_{i,j}=1$$
 if $f(x_i)\in I_j.$

The cover assignment scheme A^* , in this case, is degenerate at e^* .

$$\mathbb{P}(\mathcal{A}^* = e | \mathbb{X}_n) = egin{cases} 1 & ext{if } e = e^*, \ 0 & ext{otherwise.} \end{cases}$$

Let $\delta > 0$. Using the same notations as before, and denoting each element of the cover with $I_j = [a_j, b_j]$, consider, for each $j \in \{1, ..., r\}$, the function $q_j \colon \mathbb{X}_n \longrightarrow [0, 1]$ defined with:

$$x \mapsto \begin{cases} 1, & \text{if } f(x) \in [a_j, b_j] \\ \exp(1 - 1/(1 - (\frac{a_j - f(x)}{\delta})^2)), & \text{if } f(x) \in [a_j - \delta, a_j] \\ \exp(1 - 1/(1 - (\frac{f(x) - b_j}{\delta})^2)), & \text{if } f(x) \in [b_j, b_j + \delta] \\ 0, & \text{otherwise} \end{cases}$$

Now, define $A_{\delta} = (A_{\delta,i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq r}}$ to be the random variable in $\{0,1\}^{n \times r}$ such that for every $(i,j) \in \{1,...,n\} \times \{1,...,r\}$: $A_{\delta,i,i} \mid \mathbb{X}_n \sim \mathcal{B}(q_i(x_i)).$

Comparison between A^* and A_{δ}

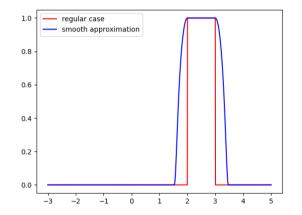
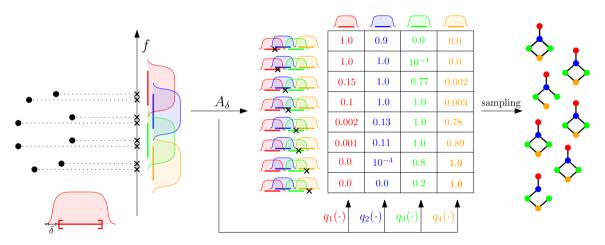


Figure: Assignment probability $p_{i,j}(\mathbb{X}_n)$ of a point x_i to an interval $I_j = [2,3]$ for A^* and A_{δ} , plotted against $f(x_i)$.

Illustration of the smooth assignment scheme A_{δ}



We define the risk of a Soft Mapper MapComp(A) by integrating the loss according to the distribution of the Soft Mapper :

$$\mathbb{E}\left(\mathcal{L}(A,F)|\mathbb{X}_n\right) = \sum_{e \in \{0,1\}^{n \times r}} \mathcal{L}(e,F) \cdot \mathbb{P}(A = e|\mathbb{X}_n).$$

Filter Optimization

Let us introduce a parameterized family of functions $\{f_{\theta} : X_n \to \mathbb{R}, \theta \in \mathbb{R}^s\}$. Let A be a cover assignment scheme whose joint distribution \mathbb{P}_{θ} depends on the filter function f_{θ} . Denoting

$$L \colon \mathbb{R}^{s} \longrightarrow \mathbb{R}$$
$$\theta \longmapsto \mathbb{E}_{\theta}(\mathcal{L}(A, f_{\theta}) | \mathbb{X}_{n}), \tag{1}$$

our aim is to find a minimizer of L.

[Oulhaj et al., 2024]

Suppose that there exists an o-minimal structure $\ensuremath{\mathcal{S}}$ such that:

- for every $x \in X_n$, the function $\theta \mapsto f_{\theta}(x)$ is definable in S and is locally Lipschitz,
- for every m ∈ N, the restriction of l to the set of (extended) persistence diagrams of size m is definable in S and is locally Lipschitz,
- for every $e \in \{0,1\}^{n \times r}$, the function $\theta \mapsto \mathbb{P}_{\theta}(A = e | \mathbb{X}_n)$ is definable in S and is locally Lipschitz.

Then L is definable in \mathcal{S} and is locally Lipschitz.

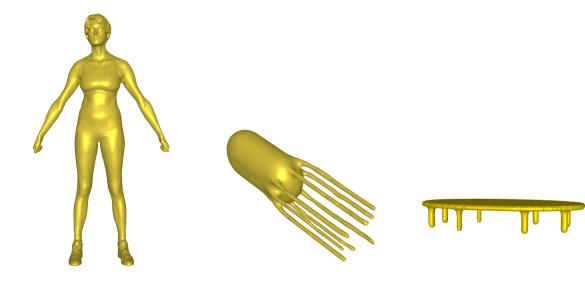
[Oulhaj et al., 2024]

Suppose that there exists an o-minimal structure $\ensuremath{\mathcal{S}}$ such that:

- for every $x \in X_n$, the function $\theta \mapsto f_{\theta}(x)$ is definable in S and is locally Lipschitz,
- for every m ∈ N, the restriction of l to the set of (extended) persistence diagrams of size m is definable in S and is locally Lipschitz,
- for every e ∈ {0,1}^{n×r}, the function θ → ℙ_θ(A = e|X_n) is definable in S and is locally Lipschitz. ← Doesn't work in the regular (degenerate) case

Then L is definable in \mathcal{S} and is locally Lipschitz.

3D shapes



We wish to optimize a linear parametric family of functions, i.e., equal to $\{f_{\theta} : x \mapsto \langle x, \theta \rangle, \theta \in \mathbb{R}^3\}$, and the cover assignment scheme A_{δ} is the smooth relaxation of the standard case, with $\delta = 10^{-2} \cdot (\max_{x \in \mathbb{X}_n} f_{\theta}(x) - \min_{x \in \mathbb{X}_n} f_{\theta}(x))$.

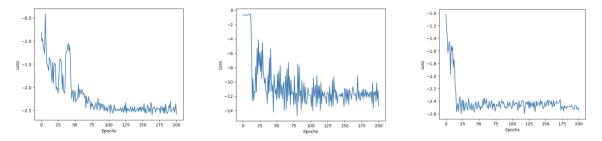
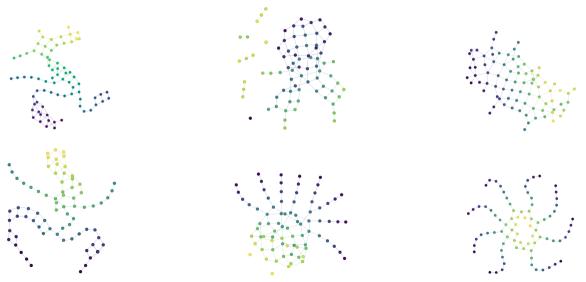


Figure: Learning curves for the 3-dimensional shapes corresponding, from left to right, to: the human, the octopus and the table.

Before - After



Thank you for listening !

Check out the poster at Hall C 4-9 #1113

[Davis et al., 2020]

Under technical conditions on the stochastic gradient descent algorithm and under the following assumptions :

- L is definable in an o-minimal structure,
- L is locally Lipschitz,

then $(L(x_k))_k$ converges almost surely to a critical value and the limit points of $(x_k)_k$ are critical points of L.

- Carriere, M., Michel, B., and Oudot, S. (2018).
 Statistical analysis and parameter selection for mapper. The Journal of Machine Learning Research, 19(1):478–516.
- Davis, D., Drusvyatskiy, D., Kakade, S., and Lee, J. D. (2020). Stochastic subgradient method converges on tame functions. Foundations of computational mathematics, 20(1):119–154.
- Oulhaj, Z., Carrière, M., and Michel, B. (2024).
 Differentiable mapper for topological optimization of data representation.
 In Forty-first International Conference on Machine Learning.
- Singh, G., Mémoli, F., Carlsson, G. E., et al. (2007).
 Topological methods for the analysis of high dimensional data sets and 3d object recognition.

PBG@ Eurographics, 2:091–100.