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Background on Mapper Graphs
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Reeb Graph

Let X be a topological space and let f : X — R be a continuous function called filter
function. Let ~¢ be the equivalence relation between two elements x and y in X defined by:
x ~¢ y if and only if x and y are in the same connected component of f~1(z) for some z in
f(X).

The Reeb graph R¢(X) of X is then simply defined as the quotient space X/ ~ .
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Reeb Graph example

Figure: Example of a Reeb graph (of a double torus) taken from [Carriere et al., 2018].
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Mapper Algorithm

The Mapper was introduced in [Singh et al., 2007] as a discrete version of the Reeb graph

R (X).
Given a discrete metric space (X, = {X1,...,Xy}),d), as well as a filter function f :
1. Cover the range of values Y, = f(X,) with a set of consecutive intervals f,..., I, that

overlap, i.e., one has [N /i1 #@ forall 1 </ <r—1.

2. Apply a clustering algorithm to each pre-image f~1(/;), j € {1,...,r}. This defines a
pullback cover C = {C11,...,C14q,---,Cr1,-.-,Crp } of Xp.

3. The Mapper graph is defined as the nerve of C. Each node v; , of the Mapper graph
corresponds to an element C; , of C, and two nodes v; x and vj 4 are connected by an
edge if and only if C; x NCjr v # @.
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Mapper Example

Figure: Example of a Mapper graph taken from [Carriere et al., 2018]. The clustering is specified from a
neighborhood graph.
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Hyperparameters

Most commonly, the intervals are chosen to have the same length, with a fixed percentage of
overlap between consecutive ones.

Hyperparameters to choose

1. Number of intervals (resolution) : r,
2. Percentage of overlap (gain) : g,

3. Clustering,

4. Filter function.
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Hyperparameters

Most commonly, the intervals are chosen to have the same length, with a fixed percentage of
overlap between consecutive ones.

Hyperparameters to choose

1.

Number of intervals (resolution) : r, <~ Grid search, Look for stability, Infer it from the
inherent manifold structure of the data.

Percentage of overlap (gain) : g, < Same as resolution.
Clustering, < Depends on the nature of the dataset.
Filter function. « 7
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Topological Signatures on Mapper graphs
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Filtering a Mapper graph
Fix a dataset (discrete metric space) X,,, a integer r and a clustering function Clus.

Let K be the set of simplicial complexes of dimension less or equal to 1 (i.e., graphs) and such
that their sets of vertices (i.e., their 0—skeletons) are subsets of the power set P(X,).

11/38



Filtering a Mapper graph

Fix a dataset (discrete metric space) X,,, a integer r and a clustering function Clus.
Let K be the set of simplicial complexes of dimension less or equal to 1 (i.e., graphs) and such
that their sets of vertices (i.e., their 0—skeletons) are subsets of the power set P(X,).

Filtration values

For a function F € F(X,,R), we associate a filtration ¢ to some K € K with:

F
Voe K : ¢(o) = Tg}%#(;;()
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Filtering a Mapper graph

Fix a dataset (discrete metric space) X,,, a integer r and a clustering function Clus.
Let K be the set of simplicial complexes of dimension less or equal to 1 (i.e., graphs) and such
that their sets of vertices (i.e., their 0—skeletons) are subsets of the power set P(X,).

Filtration values

For a function F € F(X,,R), we associate a filtration ¢ to some K € K with:

5 R EX @ F(X)
o ek o) = g e

Persistence diagram

We denote by MapPers the function that takes a Mapper graph and a scalar function on X,
and then outputs the persistence diagram:

MapPers: K x F(X,,R) — P(R?).
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Persistence loss

Denoting PD as the set of subsets of R? consisting of a finite number of points outside the

diagonal A = {(x,x) : x € R}, we also consider a loss function : ¢: PD — R.
For example :

n
{(ui, vi) }i<icn — — Z luj — vil.

i=1
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Formal definition of the Mapper

Cover assignment

We call any binary matrix e € {0,1}"*" an r-latent cover assignment of X,,, where €;; = 1

must be understood as point x; belonging to the j-th element of a latent cover of the data.
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Formal definition of the Mapper

Cover assignment

We call any binary matrix e € {0,1}"*" an r-latent cover assignment of X,,, where €;; = 1

must be understood as point x; belonging to the j-th element of a latent cover of the data.

Mapper complex generating function
Define

MapComp: {0,1}"*" — K,

to be the function that takes a cover assignment and associates its corresponding Mapper
complex. It uses the same algorithm for Mapper but replaces f~1(/;) by {x; : e;; = 1}.
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Soft Mapper

We use this formalism to define distributions on Mapper graphs.

Cover assignment scheme

A cover assignment scheme is a double indexed sequence of random variables

A= (Aij)i<i<n
1<<r
such that each A;; is a Bernoulli random variable conditionally to X,.
Let p; j(X,) be the parameter of the Bernoulli distribution of (A; ;|X,), which is thus a
function of the point cloud X,,.
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Soft Mapper

We use this formalism to define distributions on Mapper graphs.

Cover assignment scheme

A cover assignment scheme is a double indexed sequence of random variables

A= (Aij)i<i<n
1<<r
such that each A;; is a Bernoulli random variable conditionally to X,.
Let p; j(X,) be the parameter of the Bernoulli distribution of (A; ;|X,), which is thus a
function of the point cloud X,,.

Soft Mapper

Let A be a cover assignment scheme. The Soft Mapper of A is defined as the associated
distribution of Mapper complexes, which corresponds to the push forward measure of the
distribution of A by the map MapComp.
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Example 1 : The regular case

let f: X, — R be a filter function and let (/;)1<j<, be a finite cover of the image f(X,) of f.

The standard Mapper graph is then defined as MapComp(e*), where for every 1 < i < n and
1</<r

The cover assignment scheme A*, in this case, is degenerate at e*.

1 ife=e¢e"

0 otherwise.

P(A* = e[X,) = {

20/38



Example 2 : Smooth relaxation of the regular case

Let § > 0. Using the same notations as before, and denoting each element of the cover with
l; = [a;, bj], consider, for each j € {1, ..., r}, the function g;: X, — [0, 1] defined with:

1, if £(x) € [a), bj]
o J e = 1/(1 = (), if F(x) € g — 6, 3]
ep(1—1/(1— (5. if £(x) € by, by + 4]
0, otherwise
Now, define A5 = (As,ij)1<i<n to be the random variable in {0,1}"*" such that for every
1<j<r
(1,0) € {1, oon} x {1, rk:

Asij | Xn ~ B(qj(xi))-
We have

L
As —— A*.
6—0
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Comparison between A* and Aj

1.0 1 — regular case
—— smooth approximation
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Figure: Assignment probability p; j(X,) of a point x; to an interval [; = [2,3] for A" and As, plotted against

f(xi).
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lllustration of the smooth assignment scheme As
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Risk of a Soft Mapper

We define the risk of a Soft Mapper MapComp(A) by integrating the loss according to the
distribution of the Soft Mapper :

E(L(AF)Xn) = Y L(e,F)-P(A=elX,).
ec{0,1}"*"
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Filter Optimization
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Problem setting

Let us introduce a parameterized family of functions {fy : X, — R, § € R°}. Let A be a cover
assignment scheme whose joint distribution Py depends on the filter function fy. Denoting

L:R°*—R
0 — Eo(L(A, fy)|Xp), (1)

our aim is to find a minimizer of L.

26 /38



Guarantees on stochastic gradient descent

[Davis et al., 2020]
Under technical conditions on the stochastic gradient descent algorithm and under the
following assumptions :

® | is definable in an o-minimal structure,

® | is locally Lipschitz,
then (L(xk))x converges almost surely to a critical value and the limit points of (xx)x are
critical points of L.
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Main result

[Oulhaj et al., 2024]
Suppose that there exists an o-minimal structure S such that:
e for every x € X,,, the function 8 — fy(x) is definable in S and is locally Lipschitz,

e for every m € N, the restriction of £ to the set of (extended) persistence diagrams of size
m is definable in S and is locally Lipschitz,

nxr

e for every e € {0,1}

, the function 0 — Py(A = e|X,,) is definable in S and is locally
Lipschitz.

Then L is definable in § and is locally Lipschitz.
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Main result

[Oulhaj et al., 2024]
Suppose that there exists an o-minimal structure S such that:
e for every x € X,,, the function 8 — fy(x) is definable in S and is locally Lipschitz,

e for every m € N, the restriction of £ to the set of (extended) persistence diagrams of size
m is definable in S and is locally Lipschitz,

nxr

o for every e € {0,1}""", the function 6 — Py(A = e|X,,) is definable in S and is locally
Lipschitz. <— Doesn’t work in the regular (degenerate) case

Then L is definable in § and is locally Lipschitz.
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Experiments
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3D shapes
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We wish to optimize a linear parametric family of functions, i.e., equal to
{fy: x = {x,0), 0 € R3}, and the cover assignment scheme As is the smooth relaxation of the

standard case, with § = 1072 - (max,ex, fy(x) — minyex, fa(x)).

0 25 50 75 100 125 150 175 200 o 25 50 75 100
Epochs Epochs

125 150 175 200

Loss

0 25 50 75 100 125 150 175 200
Epochs

Figure: Learning curves for the 3-dimensional shapes corresponding, from left to right, to: the human, the

octopus and the table.
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Before - After
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Human preimplantaion cells
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Figure: Regular Mapper graphs for the human preimplantation dataset computed using: in the left the initial

filter function and in the right the optimized filter function. Vertices are colored using the mean value of the
sampling timepoint in the clusters.
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Correlation with the sampling time
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Figure: Estimated density of each subset of cells having the same sampling timepoint, with respect to: in the
left the initial filter function values and in the right the optimized filter function values. Colors indicate the
sampling timepoint in days.
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Gene expressions
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Figure: Regular Mapper graph computed using the optimized filter function, colored using the mean normalized
expression of: in the left gene HTR3E and in the right gene CDXI1.
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Thank you for listening !
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